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The objective of this work is to develop an efficient and robust Krylov-based
Uzawa algorithm for the solution of the 3D steady-state and unsteady-state Stokes
equations with discontinuous-pressure tetrahedral finite elements. To this end, a class
of preconditioned conjugate gradient Uzawa algorithms are presented and compared
to those of the literature for other finite element types. A comparison is also made
with an inexact Uzawa algorithm for the steady-state case. An analysis of the results
obtained for various problems leads to an iterative scheme that is well adapted to
the solution of Stokes problems of all sizes and complexities such as those found in
industrial applications. c© 2002 Elsevier Science (USA)
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1. PRELIMINARIES

1.1. Introduction

Over the years, many different computer algorithms based on the finite element method
have been developed for the solution of the Navier–Stokes equations

ρ

(
∂v
∂t

+ v · grad v
)

− µ�v + grad p = f, in �, (1)

div v = 0, in �. (2)

Classical ways to cope with the nonlinearity owing to the inertia term include the method
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of successive substitution (Picard iteration) and Newton’s method. These transform the
Navier–Stokes equations into a series of Stokes-like problems, the discretization of which
leads to the linear system

[
A BT

B 0

] [
V
P

]
=

[
F
0

]
, (3)

where A contains a mass matrix term to account for the time derivative. In the case of
the steady-state Stokes equations, A stands for the diffusion matrix only. It thus comes
as no surprise that the overall efficiency of these fixed-point methods is closely related
to the performance of the Stokes solver used. Other situations that involve as a substep
the solution of Stokes-like problems include the simulation of non-Newtonian fluid flows,
where some linearization process is required to handle the nonlinear diffusion term [1], and
operator-splitting strategies for the solution of the Navier–Stokes equations, where inertia
and incompressibility are decoupled [2].

1.2. Iterative Methods

In the context of three-dimensional problems, a large number of degrees of freedom are
generally required for a good approximation, so that solving the Stokes equations implies
dealing with huge sparse linear systems. For this purpose, iterative methods are definitely
more attractive than direct methods, as they require much less memory and CPU time [3]
and, to a certain extent, are more easily amenable to parallelism. They are, however, very
sensitive to matrix conditioning and, as a result, the number of iterations necessary for their
convergence increases with the matrix system size. Consequently, iterative methods are
normally preconditioned. In other words, matrix system Ax = b is replaced by S−1Ax =
S−1b, where S is a preconditioning matrix, the inverse of which should be easy to build
and as close as possible to A−1. In the field of computational fluid dynamics (CFD), the
search for efficient preconditioners has been the subject of active research for more than
20 years [4]. We can cite, in particular, the preconditioners based on incomplete factoriza-
tion (see, e.g., [5–7]), which perform very well even on three-dimensional unstructured
meshes. We can also mention the multilevel preconditioners, which are of two types:
the multigrid methods [8] that rely on a hierarchy of discretizations and the algebraic
multilevel methods [9, 10] that only require the matrix of the linear system and have
been shown to cope quite well with the unstructured grids of industrial CFD problems
[11].

Choosing an iterative method (also called acceleration method) for the solution of a linear
system cannot be done without some a priori knowledge of the properties of the related
matrix. Furthermore, it is known that there is no such thing as a best overall iterative method.
This fact is confirmed in the paper by Nachtigal et al. [12] that clearly shows that one can
construct examples for which any given method outperforms others by some reasonable
factor. For these reasons, numerous iterative methods have been developed over the years,
including Krylov subspace methods such as the conjugate gradient method for symmetric
positive definite systems and more recently methods such as CGS [13], Bi-CGSTAB [14],
TFQMR [15], and GMRES [16] for nonsymmetric systems. A good survey of these methods
can be found in [4].
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1.3. Solution Strategies for the Stokes Equations

There exist different strategies for solving the Stokes equations, that is, system (3), where
A stands for diffusion and inertia is neglected.

First, the mixed method consists of solving this system in a coupled manner, that is, for
V and P at the same time. In such a case, the associated matrix is singular, which reflects
the fact that the pressure in the momentum equation (1) is unique up to a constant. Since
the matrix is symmetric indefinite, the conjugate gradient method is not applicable. As an
alternative several authors such as Robichaud et al. [17], Rusten and Winther [18], Atanga
and Wathen [19], and Ramage and Wathen [20] have shown the rather good ability of
residual-type methods to solve the Stokes equations.

On the basis that (coupled) mixed methods are often impractical for the treatment of three-
dimensional problems, mainly because of their memory requirements and their propensity
to increase matrix bandwidth and spoil conditioning, considerable effort has been devoted
to the development of efficient decoupled methods. One of them is the penalty method,
which amounts to solving the modified momentum equation

(A + rBT B)V = F, (4)

where r is a penalty parameter. The pressure is eliminated from the formulation and can be
retrieved through the relation

p = −rBV. (5)

When used in conjunction with direct methods for the solution of (4), the penalty method
has proven to be both robust and accurate provided that the penalty parameter is large
enough [21]. However, when the problem size dictates the choice of iterative solvers, its
efficiency is known to decay significantly, the reason being that the condition number of
the related linear system increases with the value of the penalty parameter. To alleviate this
shortcoming, one can resort to the Uzawa algorithm [22] with 0 < λ < 2r, where λ is a
descent parameter:

0. Given P(0)

1. For n = 0, 1, 2, . . . , until convergence
1.1 Given P(n), solve for V(n+1) the primal problem

(A + rBT B)V(n+1) = F − BT P(n). (6)
1.2 Compute P(n+1)

P(n+1) = P(n) − λBV(n+1). (7)

Step 1.2 in the Uzawa algorithm is nothing but a descent method for the solution of the
so-called dual problem (also called the Schur complement)

BV = 0 ⇔ B(A + rBT B)−1BT P = B(A + rBT B)−1F, (8)

where the right-hand side of the equivalence results from the elimination of V using Eq. (6).
One can then show that this linear system in pressure is symmetric positive definite and that
its condition number decreases as r increases [22]:

lim
r→∞ cond(B(A + rBT B)−1B) = 1. (9)

In other words, choosing r > 0 can be viewed as one way to precondition the dual problem
(8). Unfortunately, as mentioned before, the effect on the convergence of iterative solvers
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for the solution of primal problem (6) is quite the opposite since

lim
r→∞ cond(A + rBT B) = +∞. (10)

In practice, it turns out that the selection of an optimal trade-off value for the penalty param-
eter is a rather delicate operation. One possibility is to simply drop this penalty parameter
and rely upon other forms of preconditioning. Atanga and Silvester [23] even consider
that preconditioning the dual problem is of rather limited interest since matrix BA−1BT

has a condition number that is independent of mesh size h, if one uses a stable mixed
finite element [24] or a stabilized finite element such as the locally stabilized Q1 − P0

element introduced by Silvester and Kechkar [25]. Along the same line, Verfürth [26]
developed a robust and proficient nonpreconditioned Uzawa solver based on a multigrid
method for the solution of the underlying primal problem. We will show in this paper that
preconditioning the dual matrix can lead to a significant decrease in the number of Uzawa
iterations.

To speed up the convergence of the Uzawa algorithm, Cahouet and Chabard [27] proposed
solving both the primal and dual problems by means of a preconditioned conjugate gradient
method. In their work, an incomplete factorization was used to precondition the primal
problem and an efficient preconditioner, based on a Fourier analysis of the divergence
operator, was devised for the dual problem. Developed in the context of the 3D continuous-
pressure P2 − P1 Taylor–Hood element, this dual preconditioner has also been employed
by Carriere and Jeandel [28] for the solution of nonisothermal fluid flow problems with the
3D continuous-pressure P1 − P1 iso P2 element. It has since been extended to the case of
the 3D discontinuous-pressure Q2 − P0 and Q2 − P1 brick elements by Zhou [29] and to
the case of the 2D locally stabilized Q1 − P0 element by Vincent [30].

1.4. Objective of This Work

Despite the greater flexibility of tetrahedra over bricks for the meshing of complex ge-
ometries and the risk inherent to the use of nonlocally mass-conserving continuous-pressure
finite elements as shown by Pelletier et al. [31], no work has been reported on the extension
of the Krylov-based Uzawa algorithm proposed by Cahouet and Chabard [27] to the case of
3D discontinuous-pressure tetrahedral elements. The objective of this paper then consists
of introducing an efficient and robust Krylov-based Uzawa algorithm for the solution of
the 3D Stokes equations with discontinuous-pressure tetrahedral finite elements, following
along the lines of Cahouet and Chabard [27]. In particular, we will show that not precon-
ditioning the dual problem can result in a significant reduction of the convergence speed
of the iterative method and, in some cases, to the divergence of this method. To this end,
many dual preconditioners will be presented and compared through various steady-state
and unsteady-state problems.

The outline of the remainder of the paper is as follows. In Section 2, the discontinuous-
pressure tetrahedral finite elements used in this work are presented. In Section 3, two Stokes
solvers are described: the preconditioned conjugate gradient Uzawa algorithm (PCGU), as
introduced by Cahouet and Chabard [27], and the seemingly very fast incomplete Uzawa
algorithm (IU) of Robichaud et al. [32], a Stokes solver that has been used by the authors for
more than 10 years and implemented in the commercial finite element program POLY3DTM

from Rheotek Inc. Next, Section 4 is divided into two subsections. In the first, which relates
to the steady-state Stokes equations, the convergence properties of the PCGU algorithm
are analyzed and compared, through the selection of benchmark problems, with those
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obtained in the literature for other finite element types. Comparison is also made with the
IU algorithm and shows the superiority of the PCGU algorithm in many cases. In the second
subsection, which relates to the unsteady-state Stokes equations, the convergence properties
of the PCGU algorithm are investigated. In particular, the efficiency of three different
preconditioners for the dual problem is assessed with respect to the size of the time step via
a dimensionless group called the mesh Reynolds number.

2. DISCRETIZATION

We consider the solution of the Stokes equations. Discretization is achieved using
discontinuous-pressure tetrahedral finite elements. In this work, three such elements will be
considered [33]: the 8-node linear P+

1 − P0 element, which comprises 24 velocity degrees
of freedom and 1 pressure degree of freedom at the element centroid, the 14-node linear
P+

2 − P0, which is composed of 42 velocity degrees of freedom and 1 pressure degree of
freedom, and the 15-node quadratic P+

2 − P1 Crouzeix–Raviart element, which contains 45
velocity degrees of freedom and 4 pressure degrees of freedom located at the element cen-
troid (Fig. 1). In this latter case, a classical static condensation can be applied to eliminate

FIG. 1. Discontinuous pressure tetrahedral finite elements. �, vertex or edge node; , face node; �, centroid
node; �•, centroid node (gradient components).
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the three internal velocity degrees of freedom. Alternatively, one can opt for the trick of
Fortin and Fortin [34] to eliminate the three internal velocity degrees of freedom as well as
the three degrees of freedom related to the pressure gradient. As this procedure incurs almost
no extra cost, computational effort then becomes equivalent to that for the constant-pressure
14-node P+

2 − P0 element.

3. CONJUGATE-GRADIENT-BASED UZAWA SOLVERS

3.1. Preconditioned Conjugate-Gradient Uzawa Algorithm

Following along the lines of Cahouet and Chabard [27], we propose to use for the solution
of the Stokes equations the following preconditioned conjugate-gradient Uzawa algorithm:

0. Given P(0)

1. Solve the primal problem
AV(0) = F − BT P(0). (11)

2. Solve the dual problem (8) using the preconditioned conjugate-gradient method
2.1 Initializations

b(0) = 0,

D(0) = 0.

2.2 For n = 1, 2, . . . , until convergence
2.2.1 D(n) = C−1BV(n−1) + b(n−1)D(n−1),
2.2.2 Z(n) = A−1BT D(n),

2.2.3 a(n) =
(
BV(n−1), C−1BV(n−1)

)
(
C−1BV(n−1), BZ(n)

) ,

2.2.4 P(n) = P(n−1) + a(n)D(n),
2.2.5 V(n) = V(n−1) + a(n)Z(n),

2.2.6 b(n) =
(
BV(n), C−1BV(n)

)
(
BV(n−1), C−1BV(n−1)

) .

In this algorithm, the primal problems, that is, step 2.2.2 and Eq. (11), which is nothing but
Eq. (6) with r = 0, are solved classically using a conjugate-gradient method preconditioned
by an incomplete factorization (ILU). Note that this preconditioner does not appear explicitly
in the algorithm shown here for the sake of brevity and that other preconditioners such those
based on (algebraic) multilevel methods could be used.

The solution of dual problem (8) is also obtained by means of a preconditioned conjugate-
gradient method. No penalty term is used to enhance the convergence speed of the dual
iterations because of the detrimental effect it might have on the convergence speed of the
primal iterations. Instead, preconditioning can be based on a discretization of the operator
proposed by Cahouet and Chabard [27],

C−1 = µ

ρ
I−1 − 1

dt
�−1, (12)

where dt represents the time step (for the time integration scheme), I is the identity op-
erator, and � is the pressure Laplacian. With such a choice, one can prove that if the
divergence of the velocity is taken to be a harmonic function, then the descent parameter
in the Uzawa algorithm becomes independent of the frequency. Consequently, it should
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be effective at getting rid of both the (high-frequency) oscillatory and the (low-frequency)
smooth components of the residual, a well-known property of multilevel methods [35].

For steady-state problems, preconditioner (12) simply becomes

C−1 = µ

ρ
I−1, (13)

whereas for strongly unsteady-state cases, that is, whenever the mesh Reynolds number,

Reh = ρh2

µ dt
, (14)

is much larger than 1, it simplifies to

C−1 = − 1

dt
�−1. (15)

The latter is nothing but the preconditioner proposed by Labadie and Lasbleiz [36] in the
case of unsteady fluid flow problems.

The discretization of the first term in (12) is straightforward as it amounts to assembling
a pressure mass matrix Mp. The same cannot be said of the second term, which is a pressure
Laplacian. One possibility consists of directly discretizing it to obtain the so-called classi-
cal Laplacian along with its nongeneral and debatable homogeneous Neumann boundary
conditions. This is, for instance, the approach that is advocated by Zhou [29] when dealing
with the Q2 − P0 brick. As the pressure is approximated by one degree of freedom at the
centroid of each element, this author suggests resorting to the finite volume method for
the computation of the terms C−1BV(n) and C−1BV(n−1) that appear in the algorithm. This
strategy is, however, limited to constant pressure approximations and it does not extend
easily to the case of linear (discontinuous- or continuous-) pressure approximations. Of
course, in the discontinuous case, one may employ the trick of Fortin and Fortin [34] to
condense the (nonconstant) Hermitian part of the pressure. In any case, there is no doubt
that using the finite volume method in the context of unstructured meshes of P+

1 − P0 finite
elements would be more cumbersome.

Alternatively, the second term in (12) can be discretized by means of what is commonly
referred to as the compatible Laplacian, leading to

C−1 = µ

ρ
M−1

p − 1

dt

(
BM−1

v BT
)−1

, (16)

which has the appealing advantage of entailing pressure boundary conditions that conform
to the velocity field. However, this necessitates the computation of the inverse of velocity
mass matrix Mv, a full matrix that makes this approach impracticable in 3D for storage
reasons. As a result, many researchers have sought alternative expressions similar to (16).
In particular, Zhou [29] suggested replacing Mv by its lumped version Mlumped

v :

C−1 = µ

ρ
M−1

p − 1

dt

(
B

(
Mlumped

v

)−1
BT

)−1
. (17)

He reported a slightly better convergence rate than that obtained with a preconditioner based
on the diagonal of Mv, that is,

C−1 = µ

ρ
M−1

p − 1

dt
(B diag(Mv)

−1BT )−1, (18)

as suggested by Cahouet and Chabard [27] and Carriere and Jeandel [28].
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It is clear that the second term in (18) dominates for large values of the mesh Reynolds
number. In such a case, A ∼ Mv so that an alternative to preconditioner (18) is given by

C−1 = µ

ρ
M−1

p − 1

dt
(B diag(A)−1BT )−1, (19)

which can be easily built because the matrix A is readily available. This preconditioner can
be viewed as an extension of the preconditioner [28]

C−1 = (B diag(A)−1BT )−1, (20)

which, albeit rather inefficient for steady-state flows [29], has proven to be superior in the
case of unsteady problems [27, 29] to the preconditioners (16)–(18) and the one involving
the classical discretization of the pressure Laplacian. In fact, as will be shown later, the extra
term in (19) will make this preconditioner most efficient in extremal cases (steady state and
strongly unsteady) as well as in intermediate cases, the proper amount of weighting for the
two terms being adjusted as a function of the mesh Reynolds number (14) to ensure rapid
convergence in all situations.

3.2. Incomplete Uzawa Algorithm

As was just seen in Section 3.1, each iteration of the preconditioned conjugate gradient
Uzawa algorithm requires at step 2.2.2 the iterative solution of a linear system with coef-
ficient matrix A. The following question then arises: How accurate should the solution to
this linear system be so as to maintain the overall convergence of the Uzawa algorithm? In
other words, for each outer iteration, how many inner iterations should be performed?

A first answer may be based upon observation. First, let us denote by Rp the primal
residual, that is, the residual corresponding to the inner loop 2.2.2 (as well as to that of
Eq. (11)), and by Rd = BV(n+1) the dual residual. Next, let us consider in the case of the
primal and dual problems respectively that the iterative methods are converged when∥∥R(k)

p

∥∥ ≤ εp

∥∥R(0)
p

∥∥ (21)

and ∥∥R(k)
d

∥∥ ≤ εd

∥∥R(0)
d

∥∥, (22)

where k stands for the kth iterate. The issue is then to decide how to choose tolerance values
εp and εd that will ensure the convergence of the overall algorithm. For instance, Ramage
and Wathen [20] and Wille [37] reported that εp should be smaller than 10−3 and that

εd

εp
≥ 10 (23)

proved to be a good choice in many circumstances. Our experience has revealed that condi-
tion (23) is normally sufficient provided εd is not too small; otherwise, greater accuracy is
generally required for the solution of the primal problem. The results presented in Section 4
were obtained with εp = 10−8 and εd = 10−6.

It is interesting to note that, as far back as in the early 1980s, Fortin and Glowinski [22]
had observed that using a relatively small number of iterations was sufficient to maintain
the same convergence rate for the Uzawa algorithm as that obtained with an exact solve of
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the inner primal problem. This observation has paved the way to the development of what is
now referred to as inexact Uzawa algorithms. For instance, Elman and Golub [38] suggested
a method in which, for each outer (dual) iteration, inner iterations are performed until

‖Rp‖ ≤ τ‖Rd‖, (24)

where τ is a constant parameter. In other words, the accuracy of the solution to the inner
(primal) problem is gradually improved as the dual residual decreases. Such an approach that
approximates A−1 through an iterative process is called a nonlinear inexact Uzawa algorithm
[39], in contrast to linear inexact Uzawa algorithms, which replace A−1 by the inverse of a
linear preconditioner. An example of this latter method is given by the incomplete Uzawa
algorithm of Robichaud et al. [32], which we recall here since its efficiency will be compared
in the next section with that of the preconditioned conjugate gradient Uzawa algorithm:

0. Given P(0)

1. For m = 1, 2, . . . , until convergence
1.1 Primal problem

1.1.1 R(m) = F − BT P(m) − (A + rBT B)V(m),

1.1.2 c(m) =
(
R(m), S−1R(m)

)(
(A + rBT B)S−1R(m), S−1R(m)

) ,

1.1.3 V(m+1) = V(m) + c(m)S−1R(m).

1.2 Dual problem
For n = 1, 2, . . . , Nd ,
1.2.1 V(n) = V(n+1), if n = 1,
1.2.2 P(n) = P(n+1), if n = 1,

1.2.3 D(n) =
∣∣∣∣ BV(n), if n = 1
BV(n) + b(n)D(n−1), else,

with b(n) =
(
BV(n), BV(n)

)
(
BV(n−1), BV(n−1)

) ,

1.2.4 Z(n) = S−1BT D(n), (25)

1.2.5 a(n) =
(
BV(n), BV(n)

)
(
BV(n), BZ(n)

) ,

1.2.6 P(n+1) = P(n) + a(n)D(n),
1.2.7 V(n+1) = V(n) + a(n)Z(n).

1.3 Updates
1.3.1 V(m+1) = V(n+1),
1.3.2 P(m+1) = P(n+1).

In this algorithm, S−1 represents an incomplete factorization of matrix A while Nd stands
for the number of dual iterations performed after each primal iteration; the results presented
in Section 4 were obtained with Nd = 2. As just mentioned, the conjugate gradient method
that is used for the solution of the dual problem is modified; step 1.2.4 should indeed read as

Z(n) = (A + rBT B)−1BT D(n), (26)

which, even if solved with an iterative solver, remains a much more time-consuming task
than the forward and backward substitutions inherent to (25). From another perspective,
the incomplete Uzawa algorithm belongs to the class of Arrow–Hurwicz algorithms, which
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can be considered as nonlinear, inexact Uzawa algorithms [40] since the primal problem
(step 1.1) is solved incompletely by one iteration of a descent method. It is thus inexact (or
incomplete) for two reasons.

4. NUMERICAL RESULTS

To better appreciate the convergence properties of the iterative methods, we introduce
the convergence rate for the dual problem,

ℵ =
[∥∥R(n)

d

∥∥∥∥R(0)
d

∥∥
] 1

n

=
[∥∥BV(n)

∥∥∥∥BV(0)
∥∥

] 1
n

, (27)

where n is the iterate number.

4.1. Steady-State Flow

In this section, the efficiency of both the preconditioned conjugate gradient Uzawa
(PCGU) method and the incomplete Uzawa (IU) algorithm for the solution of the steady-
state Stokes equations is assessed by way of the following three-dimensional benchmark
problems:

• lid-driven cavity flow problem;
• 4 : 1 contraction flow problem;
• Poiseuille flow problem.

We first consider a unit cubic cavity with the upper wall moving at a constant velocity of
1 m/s. A no-slip boundary condition is imposed on the other walls. Three meshes are used,
the characteristics of which are summarized in Table I. These meshes are similar to those
used by Cahouet and Chabard [27] and Zhou [29].

Figure 2 shows a graph of the convergence behavior of the conjugate gradient Uzawa
algorithm (preconditioned with preconditioner (13) or nonpreconditioned) with respect to
mesh size for the P+

1 − P0 and P+
2 − P1 finite elements. The following properties can be

noted:

• for the P+
1 − P0 and P+

2 − P1 elements, the convergence speed does not depend upon
the mesh size, a behavior that is theoretically justified [24] since both elements satisfy the
Brezzi–Babuska stability condition;

TABLE I

Characteristics of the Meshes Used for the Lid-Driven Cavity Problem

Element Mesh size Number of Number of Number of velocity
Mesh type (h) elements nodes equations

Coarse P+
1 − P0 0.2 936 2280 5430

Intermediate P+
1 − P0 0.1 7792 17,806 47,472

Refined P+
1 − P0 0.075 18,144 41,119 113,037

Coarse P+
2 − P1 0.2 936 4559 10,863

Intermediate P+
2 − P1 0.1 7792 35,611 94,947

Refined P+
2 − P1 0.075 18,144 82,237 226,077



KRYLOV-BASED UZAWA ALGORITHMS 627

FIG. 2. Convergence of the conjugate gradient Uzawa algorithm with and without preconditioning, for the
lid-driven cavity flow problem.

• the use of a preconditioner results in a significant reduction of the number of iterations,
all the more so in the case of the P+

2 − P1 element;
• preconditioning is necessary for the P+

2 − P1 element.

Remark. The convergence speed of the dual problem does not depend on the mesh size
for finite elements satisfying the Brezzi–Babuska condition. For the primal problem, it can
be shown [3] that the number of iterations is proportional to h−1.

The rates of convergence are presented in Table II and are compared to those obtained by
Cahouet and Chabard [27] and Zhou [29] with the PCGU algorithm. Since all the elements
under investigation are stable, the rates of convergence barely vary with mesh size, except
for the case of the coarse mesh of Q2 − P0 elements. It appears that the rates of convergence
for the continuous-pressure P2 − P1 finite element, 0.56 < ℵ < 0.58, are not as good as
those obtained for the discontinuous-pressure P+

1 − P0 and P+
2 − P1 finite elements used in

this work, 0.42 < ℵ < 0.48, and those reported by Zhou [29] for the discontinuous-pressure

TABLE II

Convergence Rates for the Lid-Driven Cavity Flow Problem

Cahouet and
This work Chabard (27) Zhou (29)

Mesh P+
1 − P0 P+

2 − P1 P+
2 − P0 P2 − P1 Q2 − P0 Q2 − P1

Coarse 0.43 0.42 0.33 0.58 0.28 0.41
Intermediate 0.45 0.48 0.35 0.56 0.37 0.44
Refined 0.46 0.47 0.32 0.57 0.40 0.45
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Q2 − P0 and Q2 − P1 finite elements, 0.28 < ℵ < 0.45. In the former case, the pressure
degrees of freedom are interrelated, which means that more work is needed to satisfy
the weak form of the continuity equation since updating the pressure is a task that must
be done in a global manner. On the other hand, in the latter cases, the pressure degrees of
freedom are independent of one another: Each Lagrange multiplier, that is, each pressure
degree of freedom, has for its support a single finite element, which means that the discretized
continuity equation can be worked out elementwise.

We were intrigued by the somewhat better rates of convergence obtained by Zhou [29] for
the Q2 − P0 finite element, 0.28 < ℵ < 0.40, as opposed to 0.41 < ℵ < 0.45 for the Q2 −
P1 finite element. But as shown in Table II, simulations carried out for the P+

2 − P0 finite el-
ement, which is the tetrahedral counterpart of the Q2 − P0 element, revealed a similar trend.
A plausible explanation is that, in the case of the P+

2 − P0 and Q2 − P0 finite elements, the
number of velocity degrees of freedom, nv , is large with respect to the number of pressure
degree of freedom, np. For these two element types, the constraint ratio defined as [41]

r = nv

np
(28)

takes on the values 51/10 and 21 respectively. As these two values are greater than 3, the
number of dimensions, it follows that the incompressibility may be poorly approximated,
in which case one says that these elements are “too soft” [42]. Projecting the velocity field
onto a divergence-free subspace is then easier to accomplish, hence leading to a faster
convergence of the PCGU algorithm.

Figure 3 shows a graph of the convergence behavior of the IU algorithm with respect to
mesh size for the P+

1 − P0 finite element. Let us mention that, in almost all the simulations
that were attempted, the IU algorithm failed to converge with the P+

2 − P1 element. This

FIG. 3. Convergence of the IU algorithm for the lid-driven cavity flow problem.
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FIG. 4. Graph of CPU time vs number of velocity equations for the lid-driven cavity flow problem.

lack of robustness is related to the use of approximation (25), which, however, appears to be
sufficient for the P+

1 − P0 element. One possible explanation might be the poor conditioning
resulting from the use of fourth-degree polynomials in the case of the P+

2 − P1 element [33].
One may also observe that, for the P+

1 − P0 element, the number of dual iterations
depends on the number of equations. The reason for this is that each time the pressure is
modified the velocity is not fully updated as with the PCGU algorithm. Instead, at every
other dual iteration (Nd = 2), one single primal iteration is carried out. As a result, the
average cost of one dual iteration is less than that with the PCGU algorithm. The following
question then naturally arises: In terms of CPU time, which of the two methods is the
more efficient? The answer to this question can be found in Fig. 4, which shows a graph
of the CPU time versus the number of velocity equations (NEQ) for the IU and the PCGU
algorithms. Similar exponents, that is, ∼1.33, are obtained with the PCGU algorithm for
both element types. It is interesting to note that in spite of an exponent of 1.52, the IU
algorithm outperforms the PCGU algorithm whenever the number of velocity equations is
less than 3,000,000.

As mentioned before, the convergence of the IU algorithm is erratic when P+
2 − P1

elements are used. It appears that its performance is also unpredictable with the P+
1 − P0

element when it is used to simulate fluid flow inside an open geometry. To illustrate this fact,
we consider the 4 : 1 contraction problem. One single mesh was generated, the characteristics
of which are summarized in Table III.

The following boundary conditions were specified with v = (vx , vy, vz), where z repre-
sents the main flow direction:

• vz = 1 m/s (Dirichlet boundary condition) at the inlet;
• v = 0 m/s (Dirichlet boundary condition) on the solid wall;
• vu = vv = 0 m/s (Dirichlet boundary condition) and free νz (homogeneous Neumann

boundary condition) at the outlet.
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TABLE III

Characteristics of the Meshes Used for the 4 : 1 Contraction Problem

Number of Number of
velocity equations velocity equations

Element Number Number (Dirichlet boundary (Neumann boundary
Mesh type of elements of nodes conditions at inlet) conditions at inlet)

Intermediate P+
1 − P0 8298 19,377 50,163 50,470

Intermediate P+
2 − P1 8298 38,753 100,328 100,941

In Fig. 5, one may readily note the deficiency of the IU algorithm and the fast convergence
of the PCGU algorithm for this problem.

As can be seen in Fig. 6, the convergence of the PCGU algorithm is in fact superlinear,
which means that its convergence rate decreases during the iterative process. Such a phe-
nomenon, which has been studied by Van der Sluis and Van der Vorst [43], is related to the
behavior of the extremal Ritz values and how quickly these converge to the corresponding
eigenvalues, thereby reducing the “apparent” condition number of the system matrix.

We believe that the imposition of Dirichlet boundary conditions at the inlet is responsible
for the divergence of the IU algorithm. Such a choice combined with a zero-velocity field
inside the domain initially leads to a non-zero-divergence velocity field as an initial solution
for the algorithm. For reasons not completely understood (approximation (25) is undoubt-
edly a key factor), the IU algorithm may fail to converge in these situations. It has been
observed that one way to alleviate this problem consists of replacing the Dirichlet boundary
conditions at the inlet by equivalent Neumann boundary conditions. Assuming that the flow

FIG. 5. Graph of the convergence of the PCGU and IU algorithms for the 4 : 1 contraction problem (with
Dirichlet boundary conditions at the inlet).
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FIG. 6. Graph of the convergence rate ℵ versus the iterations for the PCGU algorithm.

is fully developed there, this amounts to imposing a value for the pressure. Such a choice
leads to a zero-divergence velocity field as an initial solution for the algorithm. As shown in
Fig. 7, the convergence of the IU is indeed better when Neumann boundary conditions are
imposed at the inlet; if iterations end up in a crawl for the P+

2 − P1 element (the algorithm

FIG. 7. Graph of the convergence of the PCGU and IU algorithms for the 4 : 1 contraction problem (with
Neumann boundary conditions at the inlet).
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FIG. 8. Graph of the convergence of the PCGU and IU algorithms for the Poiseuille flow problem (with
Dirichlet boundary conditions at the inlet).

was stopped after 100 iterations), a rather smooth albeit slow convergence is obtained for
the P+

1 − P0. Nevertheless, in this latter case, the PCGU algorithm is much faster than the
IU algorithm, the CPU times being 136 (41 iterations) and 206 (265 iterations) seconds
respectively.

It must be emphasized that for some open geometry problems, convergence has been
observed for the P+

1 − P0 element with inlet Dirichlet boundary conditions. Figure 8,
which shows a graph of the convergence behavior of the IU and PCGU algorithms for a
Poiseuille flow problem, illustrates this fact. The characteristics of the meshes used for the
simulations can be found in Table IV. The boundary conditions are similar to those of the
4 : 1 contraction problem. One may note that, for the P+

2 − P1 element, the IU algorithm is
ineffective with a rate of convergence ℵ ∼ 1. Even though fewer iterations are required for
convergence, it appears that the PCGU algorithm is slower (79 s) than the IU algorithm in
the case of the P+

1 − P0 element (68 s).
In summary, the previous results have assessed the efficiency of the preconditioned

conjugate-gradient Uzawa algorithm for the solution of the steady-state Stokes equations

TABLE IV

Characteristics of the Meshes Used for the Poiseuille Flow Problem

Number of Number of Number of velocity
Mesh Element type elements nodes equations

Intermediate P+
1 − P0 8298 19,377 50,163

Intermediate P+
2 − P1 8298 38,753 100,328
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with discontinuous-pressure tetrahedral finite elements. We conclude that

• the PCGU algorithm is robust;
• the number of dual iterations is independent of h (for elements satisfying the Brezzi–

Babuska stability condition); and
• the execution time varies as NEQ1.33, where NEQ is the number of velocity equations.

Alternatively, we can recommend the use of the incomplete Uzawa algorithm in the
following situations where it is more efficient than the preconditioned conjugate-gradient
algorithm:

• with the P+
1 − P0 element only;

• in confined geometries, when the number of velocity equations is not too large, that
is, when there are fewer than 3,000,000.

4.2. Unsteady-State Flow

The solution of the unsteady-state Stokes equations with the preconditioned conjugate-
gradient Uzawa algorithm is now considered. Consequently, matrix A includes a mass term
to account for the time derivative in the momentum equation. It was observed in the previous
section that, for the steady-state case, the number of dual iterations is independent of the
number of velocity equations. Our goal is now to assess the efficiency of the preconditioners
introduced in Section 3 with respect to the mesh Reynolds number Reh defined by (14).
For each of the benchmark problems that follow, the kinematic viscosity µ/ρ and the mesh
size h will be constant so that increasing (resp. decreasing) Reh is equivalent to decreasing
(resp. increasing) the size of the time step dt . Consequently, our goal will also be to verify
to what extent these preconditioners lead to schemes for which the number of dual iterations
is independent of dt .

The following preconditioners, discussed in Section 3.1, will be investigated:

• C−1 = µ

ρ
M−1

p , hereafter called the diagonal preconditioner;

• C−1 = 1
dt (B diag(A)−1BT )−1, hereafter called the compatible Laplacian precondi-

tioner;
• C−1 = µ

ρ
M−1

p − 1
dt (B diag(A)−1BT )−1, hereafter called the optimal preconditioner;

and
• none.

The efficiency of these preconditioners will be assessed for the P+
1 − P0 finite element using

the lid-driven cavity flow problem (structured and unstructured meshes; simple geometry)
and an open-channel contraction flow problem arising from some extrusion process (un-
structured mesh; more complex geometry). The characteristics of the meshes used for these
problems are given in Table V.

Figure 9 shows the influence of Reh on the number of dual iterations for the PCGU
algorithm to converge in the case of the lid-driven cavity flow problem and a structured
mesh. One may observe that the number of dual iterations increases with the value of Reh

and that this number varies but slightly with the type of preconditioner used. A closer look
reveals the following:

• at all values of Reh , not using a preconditioner results in more dual iterations;
• at low values of Reh , that is, for weakly unsteady-state flows, the diagonal precondi-

tioner is better than the compatible Laplacian preconditioner;
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TABLE V

Characteristics of the Meshes Used for the Lid-Driven and the Open-Channel Contraction

Flow Problems

Number of Number of Number of velocity
Problem Element type elements nodes equations

Lid-driven cavity P+
1 − P0 5000 11,931 30,387

flow (structured mesh)
Lid-driven cavity P+

1 − P0 7792 17,806 47,472
flow (unstructured mesh)

Open-channel contraction flow P+
1 − P0 1256 3961 7964

• at large values of Reh , that is, for strongly unsteady-state flows, the compatible
Laplacian preconditioner is better than the diagonal preconditioner;

• at all values of Reh , the optimal and the compatible Laplacian preconditioners are
equivalent.

All these properties comply with the theory discussed in the previous section. The fact
that the differences in terms of the number of dual iterations needed to reach conver-
gence with each preconditioner are small are due to the regularity of the geometry and
the use of a structured mesh. To prove this, we solved the lid-driven cavity flow problem
using an unstructured mesh. In this case, conditioning is not as good and one would ex-
pect more significant differences in the performance of the various preconditioners. As
can be seen in Fig. 10, the differences are indeed more important. In particular, one may

FIG. 9. Graph of the convergence of the PCGU algorithm for the cavity flow problem and a structured mesh
of 5000 P+

1 − P0 elements.
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FIG. 10. Graph of the convergence of the PCGU algorithm for the cavity flow problem and an unstructured
mesh of 7792 P+

1 − P0 elements.

notice that

• at large values of Reh , that is, for strongly unsteady-state flows, the diagonal precon-
ditioner performs poorly, as expected, and is even outperformed by the nonpreconditioned
PCGU algorithm and

• as with the structured mesh, at all values of Reh , the optimal and the compatible
Laplacian preconditioners are equivalent.

This last property is a bit surprising since, theoretically, the optimal preconditioner should
perform better than the compatible Laplacian preconditioner, at least at small values of
Reh . We believe that this phenomenon is related to the geometric regularity of the cavity.
To investigate the influence of the regularity, we solved an open-channel contraction flow
problem arising from some extrusion process. The boundary conditions for this problem are
similar to those for the 4 : 1 contraction considered in the previous section. The influence of
Reh on the number of dual iterations is shown in Fig. 11. As can be seen, the superiority of
the optimal preconditioner over the diagonal and the compatible Laplacian preconditioners
is quite clear for this problem. One may also observe that, at small values of Reh , the optimal
preconditioner is equivalent to the diagonal preconditioner and that at large values of Reh ,
it is equivalent to the compatible Laplacian preconditioner. As mentioned in the previous
section, the optimal preconditioner is most efficient in extremal cases (steady and strongly
unsteady) as well as in intermediate cases, the proper amount of weighting for the two terms
of (19) being adjusted as a function of Reh . In fact, Fig. 11 shows that, for values of Reh

between 0 and 2.84, which corresponds to values of dt between ∞ (steady state) and 10−4,
the number of dual iterations is between 327 and 613 without preconditioning, 27 and 234
for diagonal preconditioner, 31 and 132 for the compatible Laplacian preconditioner, and
27 and 31 for the optimal preconditioner. These numbers show that, for a wide range of
values of dt , the optimal preconditioner outperforms the other preconditioners and that the
number of dual iterations required by this preconditioner to reach convergence barely varies
with dt . This latter property complies with the recent findings of Kobelkov and Olshanskii
[44] in the case of the continuous Stokes equations in regular domains.
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FIG. 11. Graph of the convergence of the PCGU algorithm for the open-channel contraction flow problem
and an unstructured mesh of 1256 P+

1 − P0 elements.

Finally, we mention that the preconditioned conjugate gradient Uzawa algorithm has
been tested in our group on a fairly large amount of problems and that, each time, the use
of the optimal preconditioner proposed in this paper has led to convergence in a robust and
efficient manner. This solver has also been implemented in the commercial finite element
program POLY3D from Rheotek Inc. The superiority of the optimal preconditioner over
the other preconditioners in all the cases presented in this work does not comply with the
findings of Carriere and Jeandel [28], who reported (for a different element type) that
the compatible Laplacian preconditioner gave the best performance. As for the work by
Zhou [29], comparisons are diffcult to make since he tested the variant (17) of the optimal
preconditioner (18) advocated by Cahouet and Chabard [27].

5. CONCLUDING REMARKS

The objective of this work consisted of developing an efficient and robust Krylov-based
Uzawa algorithm for the solution of the three-dimensional steady-state and unsteady-state
Stokes equations with discontinuous-pressure tetrahedral finite elements. To this end, a
class of preconditioned conjugate-gradient Uzawa algorithms were presented and their
convergence properties were analyzed and compared through the solution of a selection of
benchmark problems. A comparison was also made with an inexact Uzawa algorithm for the
steady-state case. It was shown that the preconditioned conjugate gradient Uzawa algorithm
represents a robust and efficient solver for the Stokes equations and that in particular:

• the PCGU algorithm is more robust than the IU algorithm and more efficient in many
situations;

• preconditioning the dual problem is indeed very important for the convergence of the
PCGU algorithm;
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• the optimal preconditioner (18), which is an extension to discontinuous-pressure tetra-
hedral finite elements of the preconditioner proposed by Cahouet and Chabard [27], out-
performs the diagonal and the compatible Laplacian preconditioners for all values of Reh

in the case of problems with complex geometries; and
• the use of the optimal preconditioner leads to a version of the PCGU algorithm for

which the number of dual iterations is independent of the time step.

Finally, a forthcoming paper will be devoted to the development of Krylov-based Uzawa
algorithms for the solution of the unsymmetric Oseen equations, such as those that arise
from the linearization of the Navier–Stokes equations through Newton’s method.
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